

CIRCLES

Diameter = 2r;

Circumference = $2\pi r$;

Area = πr^2

- \Rightarrow Chords equidistant from the centre of a circle are equal.
- \Rightarrow A line from the centre, perpendicular to a chord, bisects the chord.
- \Rightarrow Equal chords subtend equal angles at the centre.
- \Rightarrow The diameter is the longest chord of a circle.
- \Rightarrow A chord /arc subtends equal angle at any point on the circumference and double of that at the centre.

Chords / Arcs of equal lengths subtend equal angles.

Chord AB divides the circle into two parts: Minor Arc AXB and Major Arc AYB

Measure of arc AXB = m AOB = θ Length (arc AXB) = $\frac{\theta}{360^0} \times 2\pi r$

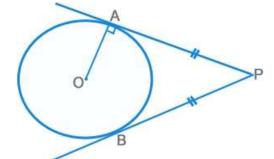
Area (sector OAXB) = $\frac{\theta}{360^0} \times \pi r^2$

Area of Minor Segment = Shaded Area in above figure

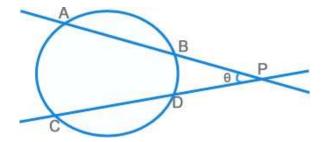
⇒Area of Sector OAXB - Area of OAB

$$\Rightarrow r^2 \left[\frac{\pi \theta}{360^0} - \frac{\sin \theta}{2} \right]$$

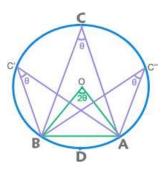
Properties of Tangents, Secants and Chords

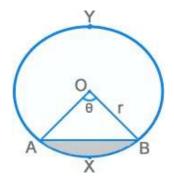


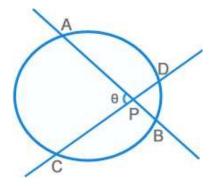
- \Rightarrow The radius and tangent are perpendicular to each other.
- \Rightarrow There can only be two tangents from an external point, which are equal in length **PA=PB**



- \Rightarrow PA × PB = PC × PD
- $\Rightarrow \theta = \frac{1}{2} [m(Arc AC) m(Arc BD)]$



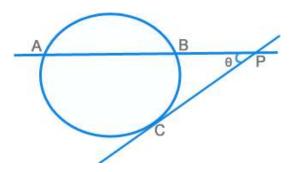




 \Rightarrow PA × PB = PC × PD

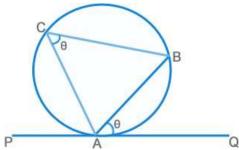
$$\Rightarrow \Theta = \frac{1}{2} [m(Arc AC) + m(Arc BD)]$$

Properties



 $PA \times PB = PC2$ $\theta = \frac{1}{2} [m(Arc AC) - m(Arc BC)]$

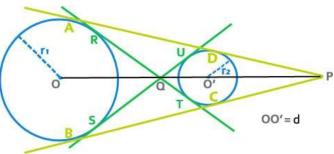
Alternate Segment Theorem



The angle made by the chord AB with the tangent at A (PQ) is equal to the angle that it subtends on the opposite side of the circumference. $\Rightarrow \angle BAQ = \angle ACB$

Common Tangents

Two Circles	No. of Common Tangents	Distance Between Centers (d)
One is completely inside other	0	< r ₁ - r ₂
Touch internally	1	$= r_1 \cdot r_2$
Intersect	2	$r_1 \cdot r_2 < d < r_1 + r_2$
Touch externally	3	$= r_1 + r_2$
One is completely outside other	4	> r ₁ + r ₂



Length of the Direct Common Tangent (DCT) $\Rightarrow AD = BC = \sqrt{d^2 - (r_1 - r_2)^2}$

Length of the Transverse Common Tangent (TCT) $\Rightarrow RT = SU = \sqrt{d^2 - (r_1 + r_2)^2}$

Concept: The two centers (O and O'), point of intersection of DCTs (P) and point of intersection of TCTs (Q) are collinear. Q divides OO' in the ratio $r_1:r_2$ internally whereas P divides OO' in the ratio $r_1:r_2$ externally.