

## **Co-ordinate Geometry**

Distance between two points P(x<sub>1</sub>, y<sub>1</sub>) and Q(x<sub>2</sub>, y<sub>2</sub>) is given by =  $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 

If a point R (x, y) divides P(x<sub>1</sub>, y<sub>1</sub>) and Q(x<sub>2</sub>, y<sub>2</sub>) internally in the ratio of m:n, the coordinates of R i.e. (x,y) are given by  $=\frac{mx_2+nx_1}{my_2+ny_1}$ 

If a point R (x,y) divides P(x<sub>1</sub>,y<sub>1</sub>) and Q(x<sub>2</sub>,y<sub>2</sub>) externally in the ratio of m:n, the coordinates of R i.e. (x,y) are given by  $=\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n}$ 

**Concept**: The X axis divides the line joining  $P(x_1, y_1)$  and  $Q(x_2, y_2)$  in the ratio of  $y_1 : y_2$ 

**Concept**: The Y axis divides the line joining  $P(x_1, y_1)$  and  $Q(x_2, y_2)$  in the ratio of  $x_1 : x_2$ 

Slope(m) of a line is the tangent of the angle made by the line with the positive direction of the X-Axis. For a general equation ax + by + c = 0; slope (m) = -a/b. For a line joining two points, P (x<sub>1</sub>, y<sub>1</sub>) and Q(x<sub>2</sub>, y<sub>2</sub>), the slope(m) is  $=\frac{y_2-y_1}{x_2-x_1}$ 

| Slope(m)   | Typeofline       | AnglewithX- Axis |
|------------|------------------|------------------|
| >0(+ive)   | Rising           | Acute            |
| 0          | ParalleltoX-Axis | 0 <sup>0</sup>   |
| < 0 (-ive) | Falling          | Obtuse           |
| infinite   | ParalleltoY-Axis | 90 <sup>0</sup>  |

Equation of a line parallel to X-axis is  $y = a \{ of X - Axis is y = 0 \}$ 

Equation of a line parallel to Y-Axis is  $x = a \{ of Y-Axis is x = 0 \}$ 

The intercept of a line is the distance between the point where it cuts the X-Axis or Y-Axis and the origin. Y- Intercept is often denoted with the letter 'c'.

## Equation of a line

**General form:** ax + by + c = 0**Slope Intercept Form:** Slope is m, y-intercept is  $c \Rightarrow y = mx + c$ 

**Slope Point Form:** Slope is m, point is  $(x_1, y_1)$  $\Rightarrow y - y_1 = m(x - x_1)$ 

**Two Point Form:** Two points are  $(x_1, y_1)$  and  $(x_2, y_2)$  $\Rightarrow (y - y_1) = \left[\frac{y_2 - y_1}{x_2 - x_1}\right] (x - x_1)$ 

**Two Intercept Form:**X-intercept is a, Y-intercept is b.  $\Rightarrow \frac{x}{a} + \frac{y}{b} = \pm 1 \text{ OR bx} + ay = ab$ 

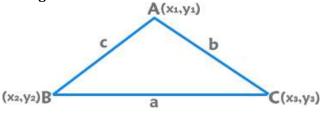
Acute angle between two lines with slope  $m_1$  and  $m_2$  is given by  $\Rightarrow \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$ 

 $\Rightarrow$  For parallel lines,  $\theta = 0^{\circ}$ ;  $m_1 m_2 = 1$ 

 $\Rightarrow$  For perpendicular lines,  $\theta = 90^{\circ}$ ;  $m_1m_2 = -1$ 

**Distance of a point P**  $(x_1, y_1)$  from a line ax + by + c = 0

$$\Rightarrow d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$
  
$$\Rightarrow \text{From origin, } d = \left| \frac{c}{\sqrt{a^2 + b^2}} \right|$$




## **Distance between two parallel lines,** $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$

$$\Rightarrow d = \left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right|$$

**Concept**: If we know three points A(x<sub>1</sub>, y<sub>1</sub>), B(x<sub>2</sub>, y<sub>2</sub>) and C(x<sub>3</sub>, y<sub>3</sub>) of a parallelogram, the fourth point is given by  $\Rightarrow$  (x<sub>1</sub> + x<sub>3</sub> - x<sub>2</sub>, y<sub>1</sub> + y<sub>3</sub> - y<sub>2</sub>)

Triangle



The vertices are P  $(x_1, y_1)$ , Q $(x_2, y_2)$  and R $(x_3, y_3)$ 

Incenter = 
$$\left\{\frac{ax_1+bx_2+cx_3}{a+b+c}, \frac{ay_1+by_2+cy_3}{a+b+c}\right\}$$
  
Centroid =  $\left\{\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right\}$   
Area =  $\frac{1}{2} \left[ x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right]$ 

## Circle

General Equation:  $x^2 + y^2 + 2gx + 2fy + c = 0$   $\Rightarrow$  Centre is (-g, -f) and radius= $\sqrt{g^2 + f^2 - c}$   $\Rightarrow$  Centre is (h, k) and radius is r  $\Rightarrow \sqrt{(x - h)^2 + (y - k)^2} = r^2$ Centre is origin and radius is r  $\Rightarrow x^2 + y^2 = r^2$