

Solid Figures

	Volume	Total SurfaceArea	Lateral/CurvedSurfaceArea
Cube	Side ³	6 ×Side ²	4×side ²
Cuboid	$L \times B \times H$	2(LB + LH + BH)	2 (LH +BH)
Cylinder	$\pi r^2 h$	2πr(r + h)	2 <i>π</i> rh
Cone	$(1/3)\pi r^2h$	πr(r +L)	$\pi rl \{where L = \sqrt{r^2 + h^2}\}$
Sphere	$(4/3)\pi r^3$	$4\pi r^2$	$4\pi r^2$
Hemisphere	$(2/3)\pi r^3$	$3\pi r^2$	$2\pi r^2$

Concept: There are 4 body diagonals in a cube /cuboid of length ($\sqrt{3} \times \text{side}$) and $\sqrt{l^2 + b^2 + h^2}$ respectively.

Frustum / Truncated Cone

It can be obtained by cutting a cone with a plane parallel to the circular base.

Volume = $\frac{1}{3}\pi h(R^2 + r^2 + Rr)$ Lateral Surface Area = $\pi(R+r)$ L Total Surface Area = $\pi(R+r)$ L + $\pi(R^2+r^2)$

Prism

It is a solid with rectangular vertical faces and bases as congruent polygons (of n sides). It will have '2n' Vertices; 'n+2' Faces and '3n' Sides / Edges.

Lateral Surface Area = Perimeter × Height

Total Surface Area = Perimeter × Height + 2Area_{Base}

Volume = $Area_{Base} x$ Height

Pyramid

It is a figure in which the outer surfaces are triangular and converge at a point known as the apex, which is aligned directly above the centre of the base.

Lateral Surface Area = 1/2 × Perimeter × Slant Height

Total Surface Area = $\frac{1}{2}$ × Perimeter × Slant Height + Area_{Base} Volume = $\frac{1}{3}$ × Area_{Base} × Height

Concept: If a sphere is inscribed in a cube of side a, the radius of the sphere will be a/2. If a sphere is circumscribed about a cube of side a, the radius of the sphere will be $\frac{\sqrt{3}a}{2}$.

Concept: If a largest possible sphere is inscribed in a cylinder of radius 'a' and height h, its radius r will be $\Rightarrow r = h/2$ {If 2a>h} $\Rightarrow r = a$ {If 2a<h}

Concept: If a largest possible sphere is inscribed in a cone of radius r and slant height equal to 2r, then the radius of sphere = $\frac{r}{\sqrt{3}}$

Concept: If a cube is inscribed in a hemisphere of radius r, then the edge of the cube = $\sqrt{\frac{2}{3}}$ r