

## **SEQUENCE, SERIES & PROGRESSION**

## **Arithmetic Progression**

$$a_n = a_1 + (n-1)d$$

$$S_n = \frac{n(a_1 + a_n)}{2}$$

**Concept**: Number of terms =  $\frac{a_n - a_1}{d} + 1$ 

## **Geometric Progression**

$$a_n = ar^{(n-1)}$$

$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum till infinite terms =  $\frac{a}{1-r}$  (Valid only when r<1)

Concept: Sum of first n odd numbers

$$\Rightarrow$$
 1+3+5+.... +(2n-1) =  $n^2$ 

Concept: Sum of first n even numbers

$$\Rightarrow$$
 2+4+6+.... +2n = n(n+1)

**Concept**: If you have to consider 3 terms in an AP, consider {a-d, a, a+d}. If you have to consider 4 terms, consider {a-3d, a-d, a+d, a+3d}

**Concept**: If all terms of an AP are multiplied with k or divided with k, the resultant series will also be an AP with the common difference dk or d/k respectively.

**Concept:**Sum of first n natural numbers =  $\frac{n(n+1)}{2}$ 

**Concept:**Sum of squares of first n natural numbers =  $\frac{n(n+1)(2n+1)}{6}$ 

**Concept:** Sum of cubes of first n natural numbers =  $\left[\frac{n(n+1)}{2}\right]^2$